Lesson plan

Name of the faculty : Dr. Umesh Gupta

Discipline : Electrical & Electronics Engineering

Semester : 6th

Subject : VLSI Design

Lesson Plan Duration: 15 weeks (From January, 2020 to April 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecture-02, Practical-01

Week	Theory		Practical	
	Lecture day	Topic(Including assignment/test)	Practical Day	Торіс
1 st	1 st	A BASIC MOS TRANSISTOR : Enhancement mode & Depletion mode	1 st	Design of Half-Adder, Full Adder, Half Subtractor, Full Subtractor
	2 nd	Fabrication (NMOS, PMOS, CMOS, BiCMOS) Technology		
2 nd	1 st	NMOS transistor current equation	2 nd	Design a parity generator
	2 nd	Second order effects – MOS Transistor Model		
3 rd	1 st	NMOS & CMOS INVERTER	3 rd	Design a 4 Bit comparator
	2 nd	GATES : NMOS & CMOS inverter		
4 th	1 st	Determination of pull up / pull down ratios	4 th	Design a RS & JK Flip flop
	2 nd	Stick diagram – Lamda based rules		
5 th	1 st	Super buffers – BiCMOS & steering logic	5th	Design a 4: 1 Multiplexer
	2 nd	SUB SYSTEM DESIGN & LAYOUT	Jui	
6 th	1 st	Structured design of combinational circuits	6 th	Design a 4 Bit Up / Down Counter with Loadable
	2 nd	Dynamic CMOS & clocking		Count

7^{th}	Sessional -I Examination+Activity				
8 th	1 st	Tally circuits – (NAND-NAND	8 th	Design a 8 bit shift register	
8	2 nd	NOR-NOR and AOI logic			
9 th	1 st	EXOR structure	9 th	Design a arithmetic unit	
9	2 nd	Barrel shifter			
10 th	1 st	DESIGN OF COMBINATIONAL ELEMENTS	10 th	Implement ADC & DAC interface with FPGA	
	2 nd	REGULAR ARRAY LOGIC : NMOS PLA			
11th	1 st	Programmable Logic Devices	11 th	Implement a serial communication interface with FPGA	
11111	2 nd	Finite State Machine PLA			
	1 st	Introduction to FPGA		Implement a Telephone	
12 th	2 nd	VHDL PROGRAMMING: RTL Design	12 th	keypad interface with FPGA	
13 th	1 st	Combinational logic – Types – Operators	13 th	Implement a VGA interface with FPGA	
	2 nd	Packages – Sequential circuit			
14 th	1 st	Sub-programs – Test benches. (Examples: address	14 th	Implement a PS2 keypad interface with FPGA	
1.	2 nd	counters, flipflops FSM, Multiplexers / De-multiplexers	1.		
15th	1 st	Revision	15 th	Implement a 4 digit seven segment display	
	2 nd	Revision			
16 th	Sessional -II Examination+Activity				